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Calicheamicin γ1
I (Figure 1a, 1)1 from Micromonospora

echinosporaspp.calichensisis over 1000 times more potent than
adriamycin,2 clinically one of the most useful antitumor agents
available. Of the two distinct structural regions within1,3 the
aryltetrasaccharide is comprised of a unique set of carbohydrate
and aromatic units which serves to site-specifically deliver the
metabolite into the minor groove of DNA,4 while the aglycon, or
“warhead”, consists of a highly functionalized bicyclo[7.3.1]-
tridecadiynene core structure with an allylic trisulfide serving as
the triggering mechanism.5 Once the aryltetrasaccharide is firmly
docked, aromatization of the bicyclo[7.3.1]tridecadiynene core
structure, via a 1,4-dehydrobenzene diradical (5), results in the
site-specific oxidative double-strand scission of the targeted
DNA.3a,4aThis extraordinary reactivity has sparked considerable
interest in the pharmaceutical industry, leading to the recent
success of1-antibody conjugates (CMA-676) to treat acute
myelogenous leukemia (AML).6 Yet, nothing is known about how
Micromonosporaconstructs1 or controls the toxic effects of this
extremely reactive metabolite. In an ongoing effort to unravel
these mysteries, we report the discovery and characterization of
a gene (calC) fromMicromonospora echinosporaspp.calichensis
which specifically confers resistance to1 in vivo and demonstrate
that its encoded protein (CalC) is a non-heme iron metalloprotein
which inhibits 1-induced DNA cleavage in vitro. This work
represents the first cloning and characterization of a resistance
gene for any non-chromoprotein enediyne.

To isolate the gene(s) responsible for1 resistance inMi-
cromonospora, clones conferring1 resistance were selected by

growth of a Micromonosporagenomic bifunctional cosmid
library7 on Luria Bertani plates containing ampicillin (50µg mL-1)
and1 (0.25 µg mL-1). In this selection, six clones (3a, 4a, 4b,
10a, 13a and 16a) displayed resistance to1, and restriction
mapping of these clones localized the desired phenotype to a∼2-
kb PstI-SacI fragment of DNA (Figure 1b, pJT1214).8 Nucleotide
sequence analysis of thePstI-SacI fragment suggested it
contained four possible open reading frames (Figure 1b), only
one of which (calC) encoded the desired phenotype.9 The
subsequent IPTG-inducible overexpression ofcalC using the
pMAL-C2 vector (pRE7, generating a maltose-binding protein
(mbp)-CalC fusion protein) inEscherichia coliincreased1-re-
sistance 102-fold in vivo (50 µg mL-1 1 when induced with 0.5
mM IPTG).10 The overexpressed mbp-CalC was purified from
pRE7/E. coli to homogeneity as judged by SDS-PAGE, the
typical yield of which was 5.1 mg of mbp-CalC per 1.0 g of
wet cells.11
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Figure 1. (a) Mechanism by which calicheamicin cleaves double-stranded
DNA. (b) Map of the calC locus and schematic representation of
subclones.
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Purified mbp-CalC displayed a yellow color in concentrated
form, and subsequent metal analysis, using inductively coupled
plasma atomic mass spectrometry (ICP-MS), revealed the presence
of Fe. Determination of the Fe stoichiometry, accomplished in
conjunction with quantitative amino acid hydrolysis,12 indicated
2.23 ( 0.3 mol of Fe per mol of mbp-CalC.13 The electronic
absorption spectrum of mbp-CalC is shown in Figure 2a. In
addition to the A280 protein absorbance (ε280 ) 99 300 M-1 cm-1),
a clear absorbance maximum at 411 nm (ε411 ) 6000 M-1 cm-1)
can be observed. Furthermore, X-band EPR measurements on the
oxidized protein exposed a standard rhombic EPR signal atg )
4.3 (E/D ) 0.33) (Figure 2a, inset). The metal content was 90(
10 µM Fe (approximately 72( 10% of total iron as seen by

ICP-MS, Figure 2b). Consistent with the lack of cysteines in the
primary sequence of CalC, the spectroscopic evidence indicates
the presence of a mononuclear Fe3+ center in CalC.14

Given that1 leads to dsDNA cleavage and CalC provides
1-resistance in vivo, it was expected that the addition of CalC to
an in vitro 1-induced DNA cleavage assay would inhibit DNA
cleavage. To test this postulation, preliminary assays utilized
supercoiled pBluescript plasmid DNA (pBS) as the template, DTT
as the reductive initiator, and the DNA cleavage products were
resolved by gel electrophoresis.15 As illustrated in Figure 2b, no
DNA cleavage was observed in the absence of DTT or1 (lanes
a and b), while efficient cleavage was demonstrated in the
presence of DTT and1 (lane c). As expected, the addition of
mbp-CalC completely inhibited1-induced DNA cleavage (lane
f), while the addition of mbp alone (lane d) as a control failed to
inhibit 1-induced DNA cleavage. Furthermore, preincubation of
mbp-CalC with DTT,15 or apo-mbp-CalC (lacking the Fe
cofactor), also failed to inhibit1-induced DNA cleavage (lane
e). However, the addition of Fe2+ or Fe3+ to theapo-mbp-CalC
assay could reconstitute CalC activity (lane g).16

A number of mechanisms are known for the detoxification of
reactive secondary metabolites.17 While the precise CalC1-de-
activation mechanism is unclear, one compelling hypothesis
consistent with both the presented spectroscopic evidence and
established oxidative1-DNA cleavage mechanism is that CalC
catalyzes radical disproportionation in a manner reminiscent of
bacterial iron superoxide dismutases (Fe-SODs).18 A second
mechanism consistent with the reported evidence is that CalC
catalyzes oxidative modification of1 in a manner similar to
mononuclear iron-containing oxygenases,19 thereby interfering
with (i) DNA-binding, (ii) the reductive triggering event (Figure
1, 1-3), and/or (iii) cycloaromatization (4). Finally, CalC may
simply be involved in the noncovalent sequestration of1, believed
to be the method of self-resistance for chromoprotein enediyne
(e.g., neocarzinostatin) producers.20 In contrast to CalC, however,
the apoproteins in these systems do not depend on a metal cofactor
and are required in roughly a 20-fold excess to achieve inhibition
of DNA cleavage in vitro.21 The present work clearly demonstrates
that CalC both is a non-heme iron metalloprotein and can inhibit
DNA cleavage at substoichiometric concentrations in vitro.15 Thus,
paralleling the postulated biosynthetic distinctions between the
chromoprotein and nonchromoprotein enediynes,1a,b nature may
have also evolved distinct mechanisms of self-resistance.
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Figure 2. (a) UV-visible absorption spectra of purified mbp-CalC (52
µM mpb-CalC; 10 mM Tris‚HCl, pH 7.5) and low-temperature (4.3 K)
X-band EPR of CalC (inset; 250µM mpb-CalC containing 0.5 mol of
Fe per mol of CalC, 10 mM Tris‚HCl, pH 7.5). (Spectrometer settings:
field set, 2050 G; scan range, 4000 G; time constant, 82 s; modulation
amplitude, 16 G; microwave power, 31µW; frequency, 9.71 GHz; gain,
1000; determined spin quantitation, 90( 10 µM Fe.) (b) Results of the
mbp-CalC in vitro assay (I, supercoiled DNA): (a) pBS DNA (1µg)
and1 (30.0 nM); (b) pBS (1µg) and DTT (833µM); (c) pBS (1 µg),
DTT (833 µM), and 1 (30.0 nM); (d) pBS (1µg), DTT (833 µM), 1
(30.0 nM), and mbp (15 nM); (e) pBS (1µg), DTT (833µM), 1 (30.0
nM), andapo-mbp-CalC (15 nM); (f) pBS (1µg), DTT (833µM), 1
(30.0 nM), and mbp-CalC (15 nM); and (g) pBS (1µg), DTT (833µM),
1 (30.0 nM),apo-mbp-CalC (15 nM), and 1 mM Fe3+ (reconstitution
with Fe2+ not shown).
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